The ESCRT-related CHMP1A and B proteins mediate multivesicular body sorting of auxin carriers in Arabidopsis and are required for plant development.
نویسندگان
چکیده
Plasma membrane proteins internalized by endocytosis and targeted for degradation are sorted into lumenal vesicles of multivesicular bodies (MVBs) by the endosomal sorting complexes required for transport (ESCRT) machinery. Here, we show that the Arabidopsis thaliana ESCRT-related CHARGED MULTIVESICULAR BODY PROTEIN/CHROMATIN MODIFYING PROTEIN1A (CHMP1A) and CHMP1B proteins are essential for embryo and seedling development. Double homozygous chmp1a chmp1b mutant embryos showed limited polar differentiation and failed to establish bilateral symmetry. Mutant seedlings show disorganized apical meristems and rudimentary true leaves with clustered stomata and abnormal vein patterns. Mutant embryos failed to establish normal auxin gradients. Three proteins involved in auxin transport, PINFORMED1 (PIN1), PIN2, and AUXIN-RESISTANT1 (AUX1) mislocalized to the vacuolar membrane of the mutant. PIN1 was detected in MVB lumenal vesicles of control cells but remained in the limiting membrane of chmp1a chmp1b MVBs. The chmp1a chmp1b mutant forms significantly fewer MVB lumenal vesicles than the wild type. Furthermore, CHMP1A interacts in vitro with the ESCRT-related proteins At SKD1 and At LIP5. Thus, Arabidopsis CHMP1A and B are ESCRT-related proteins with conserved endosomal functions, and the auxin carriers PIN1, PIN2, and AUX1 are ESCRT cargo proteins in the MVB sorting pathway.
منابع مشابه
The endosomal protein CHARGED MULTIVESICULAR BODY PROTEIN1 regulates the autophagic turnover of plastids in Arabidopsis.
Endosomal Sorting Complex Required for Transport (ESCRT)-III proteins mediate membrane remodeling and the release of endosomal intraluminal vesicles into multivesicular bodies. Here, we show that the ESCRT-III subunit paralogs CHARGED MULTIVESICULAR BODY PROTEIN1 (CHMP1A) and CHMP1B are required for autophagic degradation of plastid proteins in Arabidopsis thaliana. Similar to autophagy mutants...
متن کاملA Unique Plant ESCRT Component, FREE1, Regulates Multivesicular Body Protein Sorting and Plant Growth
Tight control of membrane protein homeostasis by selective degradation is crucial for proper cell signaling and multicellular organismal development. Membrane proteins destined for degradation, such as misfolded proteins or activated receptors, are usually ubiquitinated and sorted into the intraluminal vesicles (ILVs) of prevacuolar compartments/multivesicular bodies (PVCs/MVBs), which then fus...
متن کاملVPS36-Dependent Multivesicular Bodies Are Critical for Plasmamembrane Protein Turnover and Vacuolar Biogenesis.
Most eukaryotic cells target ubiquitinated plasma membrane (PM) proteins for vacuolar degradation in response to environmental and developmental cues. This process involves endosomal sorting complexes required for transport (ESCRT). However, little is known about the cellular mechanisms of ESCRTs in plants. Here, we studied the function of one ESCRT-II component, VPS36, which shows ubiquitin-bi...
متن کاملHuman cytomegalovirus exploits ESCRT machinery in the process of virion maturation.
The endosomal sorting complex required for transport (ESCRT) machinery controls the incorporation of cargo into intraluminal vesicles of multivesicular bodies. This machinery is used during envelopment of many RNA viruses and some DNA viruses, including herpes simplex virus type 1. Other viruses mature independent of ESCRT components, instead relying on the intrinsic behavior of viral matrix an...
متن کاملThe Arabidopsis Endosomal Sorting Complex Required for Transport III Regulates Internal Vesicle Formation of the Prevacuolar Compartment and Is Required for Plant Development.
We have established an efficient transient expression system with several vacuolar reporters to study the roles of endosomal sorting complex required for transport (ESCRT)-III subunits in regulating the formation of intraluminal vesicles of prevacuolar compartments (PVCs)/multivesicular bodies (MVBs) in plant cells. By measuring the distributions of reporters on/within the membrane of PVC/MVB o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 21 3 شماره
صفحات -
تاریخ انتشار 2009